

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

i ts not in the manual

An SQL Cookbook.

The Back-story:

I’ve always liked the technical cookbook concept. For those of you who aren’t

familiar with the format, it’s basically a loosely structured compendium of ideas

based on solving common programming problems. If you have the time, reading

through one of these can produce creative lighting strikes or, if you’re lucky, help

you solve a problem you currently happen to be grappling with.

I thought it might be interesting to write an SQL Query cookbook for those of us

fortunate enough to struggle with GoldMine’s unique database structure on a daily

basis. If you’re new to SQL and GoldMine, you might take a look at GoldMine’s

technical article entitled “Working with SQL Statements” which can be found in the

support section of the FrontRange website. It covers the basics and provides a

succinct introduction to using the SQL language and specifically how to apply it to

GoldMine’s table structure.

What follows is a random smattering of semi-interesting SQL Queries that I hope

may give you some ideas the next time you’re trying to tackle a difficult problem.

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

GoldMine’s SQL Query Window

First, Some General Observations:

Before we get too far along, I might mention a couple of idiosyncrasies that you
should be aware of if you’re going to spend any time working with GoldMine’s SQL
Query feature.

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

First; As a courtesy to SQL DBA’s everywhere, GoldMine limits the result sets
returned to 10,000 records by default. If you’re going to use this feature on a
regular basis, you’ll probably want to change that, which you can do by entering the
following line to your username.ini file:

[GoldMine]
SQLQueryLimit=nnnn

Where “nnnn” represents the maximum number of records to be returned for any
query. I usually set mine to 1000000 (one million). By the way, you should already
see the [GoldMine] in the ini file; just add the SQLQueryLimit statement to it.

Next, you need to be careful when porting Queries from one platform to another.
You can actually write queries that function perfectly when you’re connected to the
SQL Server via a “networked” copy of GoldMine but fail when run on a dbase
installation. This is because of the subtle differences between the database driver
implementations native to the BDE.

You should also be careful when joining tables from the GMBase Directory with tables
in the database directory. In Dbase, you’ll need to explicitly specify the file paths
like this:

SELECT

c1.accountno,
c1.company,
cal.accountno,
cal.ondate,
cal.ref

FROM
 ‘C:\Program Files\GoldMine\MyDb\Contact1.dbf’ as c1
INNER JOIN
 ‘C:\Program Files\GoldMine\GMBase\Cal.dbf’ as cal
ON
 c1.Accountno=Cal.Accountno

Which brings me to my final point(s). You’ll notice that I’m explicitly calling for the
accountnos in the column selections for each table involved in my join. This is very
important habit to get into due to the fact that, if you don’t, GoldMine will insert
them without your permission and use the wrong alias’s (it uses the table names by
default) and you’ll get an SQL error. Also, I’m going to use the format above for my
SQL Query examples In this document for clarity, however, GoldMine’s SQL Query
Window doesn’t provide much text formatting functionality so most of the time, your
queries will actually look like this:

SELECT c1.accountno, c1.company, cal.accountno, cal.ondate, cal.ref FROM
‘C:\Program Files\GoldMine\MyDb\Contact1.dbf’ as c1 INNER JOIN ‘C:\Program
Files\GoldMine\GMBase\Cal.dbf’ as cal ON c1.Accountno=Cal.Accountno

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

after you get them typed in (although the query window will retain formatting if it
comes from a cut and paste).

Note: As with most SQL interpreters, Borland’s version has its own syntax rules.
You’ll need to scour your hard driver for the file localsql.hlp which sometimes gets
installed in your BDE directory (sometimes not so you’ll have to keep looking or
contact me for a copy) which is the help file associated with Borland’s SQL
interpreter and contains details on all the supported SQL functions and the supported
syntax.

Okay, that’s all for housekeeping; let’s get started.

IN(NOT IN):

We’ll start with something easy.

One of my customers asked me the other day if there was a way to get a list of all
the accounts with any history. They wanted to prune their database and get rid of
contact records who were seemingly just taking up space and had no history items.
I don’t know of any way to do this with any of GoldMine’s built in tools. I suppose
you could do a contact history report, but that would be a static document, not to
mention limited to just those customers with history. We want the ones without.
This, of course, is trivial with the SQL Query feature.

This is also a great example of using the IN(NOT IN) clause which, in my opinion is
one of the most useful parts of the SQL language when it comes to whipping off one-
liners.

Let’s take our customers request. Starting with this:

SELECT
 Accountno,
 Company,
 Contact,
 Phone1,
 City,
 State,
 Zip
FROM
 Contact1

Which will return all the contacts in the contact1 table, we can add the simple line:

WHERE
 Accountno
NOT IN
 (Select accountno from conthist)

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

And there you have it. All the contact records in the database with zero history.
Pretty simple huh? Of course, you can now build a group from the results or, export
the list to Excel or whatever.

By the way, you’ll notice (if you actually run this) that it takes forever. Well, okay,
the BDE is not the most efficient SQL Query parser in the world, particularly when
used in conjunction with Dbase tables, however, have patience, you will get your
results back. I’m also making the assumption that you know better than to run
queries against your production SQL Server that may bring it to its knees during
peak work hours……..

Let’s say you want to go the other way, you want all the contacts with history
(maybe you want to send a mailer or something, I don’t know). In any case, you
can just switch the “NOT IN” to “IN”:

SELECT
 Accountno,
 Company,
 Contact,
 Phone1,
 City,
 State,
 Zip
FROM
 Contact1

WHERE
 Accountno
IN
 (Select accountno from conthist)

And there you go.

You can modify this in a number of useful ways…i.e. –

SELECT
 Accountno,
 Company,
 Contact,
 Phone1,
 City,
 State,
 Zip
FROM
 Contact1
WHERE
 Accountno
IN
 (select accountno from conthist where ref like ‘Billing Detail%’)

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

Which returns all contact records who have a history record where the ref says
“Billing Detail” at the beginning. (In my company’s case, this would be anyone
we’ve done any work for in the past as we use our Time and Billing Software Relatia
Time and Billing to capture filed work done for our customers. You can read more
about that here: www.relatia.net)

You get the picture, by changing the sub query (select accountno from conthist
where blah blah blah) you can slice and dice your contact database in regards to
their historical properties any way you like. The same applies to detail records or
calendar items. Consider the following:

SELECT
 Accountno,
 Company,
 Contact,
 Phone1,
 City,
 State,
 Zip
FROM
 Contact1

WHERE
 Accountno
IN
 (Select accountno from contsupp where contact like ‘Web Site%’)

This would return (I hope you’re getting the idea by now) all the contacts in the
database who have at least one Web Site.

Of course, I could go on forever (and I would if I were less ambitious as I could
create a hundred page article by simply cutting and pasting the above query and
simply changing the last line) but I think you get the point.

UNION:

Another, often overlooked SQL function is the UNION. Union brings two similar
(exactly similar as you’ll see) result sets together. An example may be the best way
to describe this. One of my customers wanted to return all the contact records in the
database. “Hey”, you say, “You can do that easy with a contact listing”. But, I
correct you, the customer wants to see ALL the contact, including the secondary all
bunched together in a big long list. Not so easy; in fact, there is not a way to do this
in GoldMine except with a report which is useless if you want to do anything with the
data.

Let’s tackle this one step at a time. First, the primary contacts:

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

SELECT

c1.company,
c1.contact,
c1.address1,
c1.address2,
c1.city,
c1.state,
c1.zip

FROM
contact1 c1

Okay, easy enough. Now how about the secondary contacts:

Select * from contsupp where rectype=’C’

Right? Wrong! You end up with two different lists, which isn’t what the customer
requested. Not to mention you don’t have the same information for each contact
when you do it this way.

You could change query number two to this:

SELECT

c1.company
cs.contact
cs.address1
cs.address2
cs.city
cs.state
cs.zip
cs.accountno

FROM
contact1 c1

INNER JOIN
contsupp cs

ON
c1.accountno=cs.accountno

WHERE
rectype='C'

Now at least you have two similar result sets so you could do a cut and paste job in
Excel or something, however, you’re creating a lot of extra work.

The UNION function combines two similar result sets into one big list.. hey, that
sounds like what we’re looking for so let’s try it:

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

SELECT

c1.company,

c1.contact,
c1.address1,
c1.address2,
c1.city,
c1.state,
c1.zip

FROM
contact1 c1

UNION

SELECT

c1.company
cs.contact
cs.address1
cs.address2
cs.city
cs.state
cs.zip
cs.accountno

FROM
contact1 c1

INNER JOIN
contsupp cs

ON
c1.accountno=cs.accountno

WHERE
rectype='C'

Should work beautifully right? Wrong again. The UNION operator has one annoying
(but perfectly logical) quirk in that the result sets to be combined must be identical
in regards to the data types and sizes of the columns. If you look through
GoldMine’s Data dictionary, you’ll notice that the data fields in contact1 are not
necessarily the same size as the data fields in the contsupp table where similar data
is stored (i.e. Address1), so you’ll need to “CAST” each column in the second query
to match the data types and sizes of the fields used in the first. Like so…

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

SELECT

c1.company,
c1.contact,
c1.address1,
c1.address2,
c1.city,
c1.state,
c1.zip

FROM
contact1 c1

UNION

SELECT

CAST(c1.company AS char(40)),
CAST(cs.contact AS char(40)),
CAST(cs.address1 AS char(40)),
CAST(cs.address2 AS char(40)),
CAST(cs.city AS char(30)),
CAST(cs.state AS char(20)),
CAST(cs.zip AS char(10)),
cs.accountno

FROM
contact1 c1

INNER JOIN
contsupp cs

ON
c1.accountno=cs.accountno

WHERE
rectype='C'

This works beautifully.

Another case where the UNION operator comes in handy is when you want to do a
report that includes a series of record counts.

Let’s say, for instance, that you are storing a contact type value in the key1 field.
Your contacts belong to any one of the following contact types:

Suspect
Prospect
Customer

In other words, your contact records have one of the above values in the key1 field.
You would like to know what the record distribution is for your entire database. In
other words you want to know how many Suspects you have vs. how many
Prospects, vs. how many Customers and so on.

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

You probably already know how to do record counts, so you could simply write three
separate queries and do a cut and past job to get the whole picture. Something like
this:

Select count(*) from contact1 where key1=’Suspect’
Cut and Past into Excel
Select count(*) from contact1 where key1=’Prospect’
Cut and Past into Excel
Select count(*) from contact1 where key1=’Customer’
Cut and Past into Excel

You have a sudden brainstorm and translate this into

Select count(*) from contact1 where key1=’Suspect’
UNION
Select count(*) from contact1 where key1=’Prospect’
UNION
Select count(*) from contact1 where key1=’Customer’

And now you have a result that looks like this:

Row Count___
1 38
2 100
3 330

Pretty cool, saves a few cuts and pastes. But why not just finish the job:

Select count(*),(CAST(‘Total Records’ as varchar(80))) from contact1
UNION
Select count(*),(CAST(‘Total Suspects’ as varchar(80))) from contact1 where
key1=’Suspect’
UNION
Select count(*),(CAST(‘Total Prospects’ as varchar(80))) from contact1 where
key1=’Prospect’
UNION
Select count(*), (CAST(‘Total Customers’ as varchar(80))) from contact1 where
key1=’Customer’
UNION
Select count(*), (CAST(‘Total Undefined’ as varchar(80))) from contact1 where key1
not in (‘Customer’,’Suspect’,’Prospect’)

Which returns something like this:

Row Count___ Total_reco
1 52 Total Customers
2 100 Total Suspects
3 330 Total Prospects
4 5554 Total Undefined
5 6036 Total Records

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

Which, of course eliminates cutting and pasting and allows you to save the report for
someone else to run at their leisure without having to know all the dirty details of
running three or four queries to get a single report.

Sub queries:

Another useful feature of SQL is the ability to use sub queries. In fact, we’ve already
done this in our fist example (IN and NOT IN) when we limited our result sets like
this:

WHERE
 Accountno
IN
 (Select accountno from contsupp where contact like ‘Web Site%’)

Sub queries can also be used to combine information that belongs in different data
tables but doesn’t fit together well with a plain old join.

On more than one occasion, I’ve been asked by customers to write a report in a wide
line type format that includes the next calendar entry (next step) or the last history
item as columns in the result set. Obviously there is no way to do this in GoldMine.
You can print a history report and plenty of calendar reports, but nothing in wide line
format that includes JUST the last history item or the next calendar item.

As you can probably guess, I’m about to show you how to do exactly that with an
SQL Query. This, by the way, is an excellent example of how queries are handled
differently on the SQL vs. the Dbase version of GoldMine. The following example
is NOT possible on the Dbase version due to the lack of support for the “TOP”
function (a horrible limitation and oversight on Borland’s part in my opinion) in
addition to the lack of support for calculated column names (as in SELECT contact
as ‘Contact’)

First, lets get our contact1 columns:

SELECT
 Accountno,
 Company,
 Contact,
 City,
 State,
 Phone1
FROM
 Contact1

No mystery here, however, here’s the cool part. Let’s add some sub queries.

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

SELECT
 C1.Accountno,
 C1.Company,
 C1.Contact,
 C1.City,
 C1.State,
 C1.Phone1,

(SELECT TOP 1 ondate FROM conthist WHERE accountno=c1.accountno
ORDER BY ondate DESC) as ‘Date’,
(SELECT TOP 1 userid FROM conthist WHERE accountno=c1.accountno ORDER
BY ondate DESC) as ‘User’,
(SELECT TOP 1 ref FROM conthist WHERE accountno=c1.accountno ORDER BY
ondate DESC) as ‘Reference’

FROM
 Contact1 as C1

Okay, a couple of comments; The key here is that by using column aliases (c1.xxxx)
you’re able to refer to a column outside of your sub query:

(SELECT TOP 1 ondate FROM conthist WHERE accountno=c1.accountno ORDER BY
ondate DESC) as ‘Date’

You’ll notice, as soon as you inspect the results that the query respects your current
position In the Contact1 table. If you neglect to use table aliases, you either have to
call the table by name (i.e. contact1.fieldname) or the Query interpreter will throw
an error because it thinks you’re referring to the wrong table (in our case, the
accountno in the contact history table instead of the contact1 table).

You also have to specify the sort order as “Descending” which is opposite of the
default value of “Ascending”. If you neglect to do this, you’ll get the information
from the oldest history item rather than the latest.

Now, let’s add the “Next action” to the query by doing the same thing but with the
calendar file instead. Since this query won’t run on the Dbase version for other
reasons, we don’t need to worry about specifying the physical file locations as
mentioned above.

relatia software corporation – 960 north point parkway, ste. 650 alpharetta ga, 30005
(770) 663-4455 ph (770) 663-4455 fax

www.relatia.net

SELECT
 C1.Accountno,
 C1.Company,
 C1.Contact,
 C1.City,
 C1.State,
 C1.Phone1,

(SELECT TOP 1 ondate FROM conthist WHERE accountno=c1.accountno
ORDER BY ondate DESC) as ‘Date’,
(SELECT TOP 1 userid FROM conthist WHERE accountno=c1.accountno ORDER
BY ondate DESC) as ‘User’,
(SELECT TOP 1 ref FROM conthist WHERE accountno=c1.accountno ORDER BY
ondate DESC) as ‘Reference’,
(SELECT TOP 1 ondate FROM cal where accountno=c1.accountno ORDER BY
ondate DESC) as ‘Next Act Date’,
(SELECT TOP 1 userid FROM cal where accountno=c1.accountno ORDER BY
ondate DESC) as ‘Next Act User’,
(SELECT TOP 1 rectype FROM cal where accountno=c1.accountno ORDER BY
ondate DESC) as ‘Next Act Type’,
(SELECT TOP 1 ref FROM cal where accountno=c1.accountno ORDER BY
ondate DESC) as ‘Next Act Reference’

FROM
 Contact1 as C1

Which returns a very wide report which doesn’t fit nicely in this document but
probably looks exactly like you’d expect it to look. You can cut and paste it into
GoldMine’s SQL Query tool and see for yourself.

Wrap Up

I hope that, while we’ve only looked at a few examples, you’ll find a few ideas here
that may give you some inspiration the next time you’re stuck. I hope to follow this
article up with another installment as soon as I can find some time….

Russell Smallwood is CEO of Relatia Software Corporation, authors of the popular
Relatia Time and Billing GoldMine add-on. Relatia also provides custom
programming services to GoldMine VARs across the US.

For more information on how you can help your customer and win more
business, call Linda O’Connor at (770) 663-4455 x 305 today.

